Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Rep ; 9: 114-120, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28955995

RESUMO

F420H2:NADP+ Oxidoreductase (Fno) catalyzes the reversible reduction of NADP+ to NADPH by transferring a hydride from the reduced F420 cofactor. Here, we have employed binding studies, steady-state and pre steady-state kinetic methods upon wtFno and isoleucine 135 (I135) Fno variants in order to study the effects of side chain length on the donor-acceptor distance between NADP+ and the F420 precursor, FO. The conserved I135 residue of Fno was converted to a valine, alanine and glycine, thereby shortening the side chain length. The steady-state kinetic analysis of wtFno and the variants showed classic Michaelis-Menten kinetics with varying FO concentrations. The data revealed a decreased kcat as side chain length decreased, with varying FO concentrations. The steady-state plots revealed non-Michaelis-Menten kinetic behavior when NADPH was varied. The double reciprocal plot of the varying NADPH concentrations displays a downward concave shape, while the NADPH binding curves gave Hill coefficients of less than 1. These data suggest that negative cooperativity occurs between the two identical monomers. The pre steady-state Abs420 versus time trace revealed biphasic kinetics, with a fast phase (hydride transfer) and a slow phase. The fast phase displayed an increased rate constant as side chain length decreased. The rate constant for the second phase, remained ~2 s-1 for each variant. Our data suggest that I135 plays a key role in sustaining the donor-acceptor distance between the two cofactors, thereby regulating the rate at which the hydride is transferred from FOH2 to NADP+. Therefore, Fno is a dynamic enzyme that regulates NADPH production.

2.
Biochemistry ; 55(7): 1082-90, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26811861

RESUMO

Here, we report the very first example of half-site reactivity and negative cooperativity involving an important F420 cofactor-dependent enzyme. F420H2:NADP(+) oxidoreductase (Fno) is an F420 cofactor-dependent enzyme that catalyzes the reversible reduction of NADP(+) through the transfer of a hydride from the reduced F420 cofactor. These catalytic processes are of major significance in numerous biochemical processes. While the steady-state kinetic analysis showed classic Michaelis-Menten kinetics with varying concentrations of the F420 redox moiety, FO, such plots revealed non-Michaelis-Menten kinetic behavior when NADPH was varied. The double reciprocal plot of the varying concentrations of NADPH displays a downward concave shape, suggesting that negative cooperativity occurs between the two identical monomers. The transient state kinetic data show a burst prior to entering steady-state turnover. The burst suggests that product release is rate-limiting, and the amplitude of the burst phase corresponds to production of product in only one of the active sites of the functional dimer. These results suggest either half-site reactivity or an alternate sites model wherein the reduction of the cofactor, FO occurs at one active site at a time followed by reduction at the second active site. Thus, the data imply that Fno may be a functional regulatory enzyme.


Assuntos
Proteínas Arqueais/metabolismo , Archaeoglobus fulgidus/enzimologia , Modelos Moleculares , NADH NADPH Oxirredutases/metabolismo , NADP/metabolismo , Riboflavina/análogos & derivados , Algoritmos , Proteínas Arqueais/química , Proteínas Arqueais/genética , Biocatálise , Domínio Catalítico , Dimerização , Ligação de Hidrogênio , Ligantes , NADH NADPH Oxirredutases/química , NADH NADPH Oxirredutases/genética , Oxirredução , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Riboflavina/metabolismo , Espectrometria de Fluorescência
3.
Protein J ; 34(6): 391-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26493287

RESUMO

Methanogens play a critical role in carbon cycling and contain a number of intriguing biosynthetic pathways. One unusual cofactor found in methanogenic and sulfate reducing archaea is Factor 420 (F420), which can be interconverted between its reduced and oxidized forms by the F420H2:NADP(+) oxidoreductase (Fno) through hydride transfer mechanisms. Here, we report an optimized expression and purification method for recombinant Fno derived from the extreme thermophile Archeoglobus fulgidus. An expression vector that is codon-optimized for heterologous expression in Escherichia coli, modified growth conditions, and a modified purification protocol involving a key polyethyleneimine precipitation step results in a highly purified, homogeneous preparation of Fno that displays high catalytic activity with a truncated F420 analog. This method should accelerate studies on how Fno uses the unusual F420 cofactor during catalysis.


Assuntos
Proteínas Arqueais/isolamento & purificação , Proteínas Arqueais/metabolismo , NADH NADPH Oxirredutases/isolamento & purificação , NADH NADPH Oxirredutases/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Archaeoglobus/enzimologia , Archaeoglobus/genética , Escherichia coli/genética , NADH NADPH Oxirredutases/química , NADH NADPH Oxirredutases/genética , NADP/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
4.
Curr Drug Metab ; 16(8): 676-84, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26264205

RESUMO

Our modern era is witnessing an increased prevalence of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease and brain tumors. This is accompanied by an increased production of nanoparticles (NPs) and the subsequent release of NPs in the environment shared by humans. NPs are extremely small molecules measuring about 100 nm in diameter. Due to minuscule size, NPs have the potential to penetrate human body through various pathways and eventually cross the blood-brain barrier to potentially cause neurotoxicity, neuroinflammation and neurodegeneration of the central nervous system. Until recently, the mechanisms by which NPs cause neuroinflammation and neurodegeneration were unknown. However, recent in vivo, ex vivo and in vitro studies have significantly advanced our understanding of the mechanisms by which NPs may cause neurotoxicity and neurodegeneration. In light of this understanding, various pathways have been identified as the basic mechanisms by which NPs cause damage in the brain. The goal of this review is to summarize new mechanistic findings and different pathways of NP-induced neurotoxicity. Better knowledge of such pathways can lead researchers to devise effective therapeutic strategies for neuroprotection against nanoparticles.


Assuntos
Nanopartículas/toxicidade , Doenças Neurodegenerativas/induzido quimicamente , Síndromes Neurotóxicas/etiologia , Animais , Humanos
5.
Org Biomol Chem ; 13(18): 5082-5, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25827330

RESUMO

F420 and FO are phenolic 5-deazaflavin cofactors that complement nicotinamide and flavin redox coenzymes in biochemical oxidoreductases and photocatalytic systems. Specifically, these 5-deazaflavins lack the single electron reactivity with O2 of riboflavin-derived coenzymes (FMN and FAD), and, in general, have a more negative redox potential than NAD(P)(+). For example, F420-dependent NADP(+) oxidoreductase (Fno) is critical to the conversion of CO2 to CH4 by methanogenic archaea, while FO functions as a light-harvesting agent in DNA repair. The preparation of these cofactors is an obstacle to their use in biochemical studies and biotechnology. Here, a convenient synthesis of FO was achieved by improving the redox stability of synthetic intermediates containing a polar, electron-rich aminophenol fragment. Improved yields and simplified purification techniques for FO are described. Additionally, Fno activity was restored with FO in the absence of F420. Investigating the FO-dependent NADP(+)/NADPH redox process by stopped-flow spectrophotometry, steady state kinetics were defined as having a Km of 4.00 ± 0.39 µM and a kcat of 5.27 ± 0.14 s(-1). The preparation of FO should enable future biochemical studies and novel uses of F420 mimics.


Assuntos
NADP/química , Oxirredutases/química , Riboflavina/análogos & derivados , Riboflavina/química
6.
Chem Biol ; 17(9): 959-69, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-20851345

RESUMO

In ClpXP and ClpAP complexes, ClpA and ClpX use the energy of ATP hydrolysis to unfold proteins and translocate them into the self-compartmentalized ClpP protease. ClpP requires the ATPases to degrade folded or unfolded substrates, but binding of acyldepsipeptide antibiotics (ADEPs) to ClpP bypasses this requirement with unfolded proteins. We present the crystal structure of Escherichia coli ClpP bound to ADEP1 and report the structural changes underlying ClpP activation. ADEP1 binds in the hydrophobic groove that serves as the primary docking site for ClpP ATPases. Binding of ADEP1 locks the N-terminal loops of ClpP in a ß-hairpin conformation, generating a stable pore through which extended polypeptides can be threaded. This structure serves as a model for ClpP in the holoenzyme ClpAP and ClpXP complexes and provides critical information to further develop this class of antibiotics.


Assuntos
Antibacterianos/química , Depsipeptídeos/química , Endopeptidase Clp/química , Proteínas de Escherichia coli/química , Modelos Moleculares , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Endopeptidase Clp/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Cinética , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Especificidade por Substrato
7.
Biochemistry ; 45(45): 13517-27, 2006 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-17087505

RESUMO

The X-ray crystal structure of pyruvamide-activated yeast pyruvate decarboxylase (YPDC) revealed a flexible loop spanning residues 290 to 304 on the beta-domain of the enzyme, not seen in the absence of pyruvamide, a substrate activator surrogate. Site-directed mutagenesis studies revealed that residues on the loop affect the activity, with some residues reducing k(cat)/K(m) by at least 1000-fold. In the pyruvamide-activated form, the loop located on the beta domain can transfer information to the active center thiamin diphosphate (ThDP) located at the interface of the alpha and gamma domains. The sigmoidal v(0)-[S] curve with wild-type YPDC attributed to substrate activation is modulated for most variants, but is not abolished. Pre-steady-state stopped-flow studies for product formation on these loop variants provided evidence for three enzyme conformations connected by two transitions, as already noted for the wild-type YPDC at pH 5.0 [Sergienko, E. A., and Jordan, F. (2002) Biochemistry 41, 3952-3967]. (1)H NMR analysis of the intermediate distribution resulting from acid quench [Tittmann et al. (2003) Biochemistry 42, 7885-7891] with all YPDC variants indicated that product release is rate limiting in the steady state. Apparently, the loop is not solely responsible for the substrate activation behavior, rather it may affect the behavior of residue C221 identified as the trigger for substrate activation. The most important function of the loop is to control the conformational equilibrium between the "open" and "closed" conformations of the enzyme identified in the pyruvamide-activated structure [Lu et al. (2000) Eur. J. Biochem. 267, 861-868].


Assuntos
Estrutura Terciária de Proteína , Piruvato Descarboxilase/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Catálise , Ativação Enzimática , Cinética , Mutagênese Sítio-Dirigida , Piruvato Descarboxilase/genética , Saccharomyces cerevisiae/enzimologia , Tiamina Pirofosfato/metabolismo
8.
J Biol Chem ; 280(22): 21473-82, 2005 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-15802265

RESUMO

The residue Glu636 is located near the thiamine diphosphate (ThDP) binding site of the Escherichia coli pyruvate dehydrogenase complex E1 subunit (PDHc-E1), and to probe its function two variants, E636A and E636Q were created with specific activities of 2.5 and 26% compared with parental PDHc-E1. According to both fluorescence binding and kinetic assays, the E636A variant behaved according to half-of-the-sites mechanism with respect to ThDP. In contrast, with the E636Q variant a K(d,ThDP) = 4.34 microM and K(m,ThDP) = 11 microM were obtained with behavior more reminiscent of the parental enzyme. The CD spectra of both variants gave evidence for formation of the 1',4'-iminopyrimidine tautomer on binding of phosphonolactylthiamine diphosphate, a stable analog of the substrate-ThDP covalent complex. Rapid formation of optically active (R)-acetolactate by both variants, but not by the parental enzyme, was observed by CD and NMR spectroscopy. The acetolactate configuration produced by the Glu636 variants is opposite that produced by the enzyme acetolactate synthase and the Asp28-substituted variants of yeast pyruvate decarboxylase, suggesting that the active centers of the two sets of enzymes exhibit different facial selectivity (re or si) vis à vis pyruvate. The tryptic peptide map (mass spectral analysis) revealed that the Glu636 substitution changed the mobility of a loop comprising amino acid residues from the ThDP binding fold. Apparently, the residue Glu636 has important functions both in active center communication and in protecting the active center from undesirable "carboligase" side reactions.


Assuntos
Acetolactato Sintase/fisiologia , Escherichia coli/enzimologia , Ácido Glutâmico/química , Piruvato Desidrogenase (Lipoamida)/química , Acetolactato Sintase/química , Ácido Aspártico/química , Sítios de Ligação , Catálise , Dicroísmo Circular , Relação Dose-Resposta a Droga , Variação Genética , Cinética , Lactatos/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Modelos Químicos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxigênio/química , Oxigênio/metabolismo , Peptídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Nucleosídeos de Pirimidina/química , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectroscopia de Infravermelho com Transformada de Fourier , Estereoisomerismo , Temperatura , Tiamina Pirofosfato/química , Tripsina/farmacologia , Raios Ultravioleta
9.
Biochemistry ; 43(21): 6565-75, 2004 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15157089

RESUMO

Two circular dichroism signals observed on thiamin diphosphate (ThDP)-dependent enzymes, a positive band in the 300-305 nm range and a negative one in the 320-330 nm range, were investigated on yeast pyruvate decarboxylase (YPDC) and on the E1 subunit of the Escherichia coli pyruvate dehydrogenase complex (PDHc-E1). Addition of the tetrahedral ThDP-acetaldehyde adduct, 2-alpha-hydroxyethylThDP, to PDHc-E1 generates the positive band at 300 nm, consistent with the formation of the 1',4'-iminopyrimidine tautomer, as also demonstrated for phosphonolactylthiamin diphosphate, a stable analogue of the tetrahedral ThDP-pyruvate adduct 2-alpha-lactylThDP (Jordan, F. et al. (2003) J. Am. Chem. Soc. 125, 12732-12738). Therefore, we suggest that all tetrahedral ThDP-bound covalent complexes will also prefer this tautomer, and that the 4'-aminopyrimidine of ThDP participates in multiple steps of acid-base catalysis on ThDP enzymes. Studies with YPDC and PDHc-E1, and their active center variants, in conjunction with chemical models, enabled assignment of the negative band at 330 nm to a charge-transfer transition between the 4'-aminopyrimidine tautomer (presumed electron donor) and the thiazolium ring (presumed electron acceptor) of ThDP, with no significant contributions from any amino acid side chain of the proteins. However, in both YPDC and PDHc-E1, the presence of substrate or substrate surrogate was required to enable detection, suggesting that the band at 320-330 nm be used as a reporter for the Michaelis complex, involving the amino tautomer, on both enzymes. As the positive band near 300 nm reports on the 1',4'-imino tautomer of ThDP, methods are now available for kinetic monitoring of both tautomeric forms.


Assuntos
Coenzimas/química , Coenzimas/metabolismo , Ácido Fosfonoacéticos/análogos & derivados , Tiamina Pirofosfato/química , Sítios de Ligação , Catálise , Dicroísmo Circular , Descarboxilação , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Modelos Químicos , Modelos Moleculares , Ácido Fosfonoacéticos/química , Mutação Puntual , Conformação Proteica , Piruvato Descarboxilase/química , Piruvato Descarboxilase/metabolismo , Complexo Piruvato Desidrogenase/química , Complexo Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/metabolismo , Tiamina Pirofosfato/metabolismo , Titulometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...